Custom Search

Saturday, September 20, 2008

Ruby

A Ruby is a pink to blood-red gemstone, a variety of the mineral corundum (aluminium oxide). The common red color is caused mainly by the presence of the element chromium. Its name comes from ruber, Latin for red. Other varieties of gem-quality corundum are called sapphires. The ruby is considered one of the four precious stones, together with the sapphire, the emerald, and the diamond.

Prices of rubies are primarily determined by color. The brightest and best "red" called pigeon blood-red, commands a huge premium over other rubies of similar quality. After color follows clarity: similar to diamonds, a clear stone will command a premium, but a ruby without any needle-like rutile inclusions will indicate that the stone has been treated one way or another. Cut and carat (size) also determine the price.

Physical properties

Rubies have a hardness of 9.0 on the Mohs scale of mineral hardness. Among the natural gems

Ruby

Ruby crystal before faceting, length 0.8 inches (2 cm)
General
Category Mineral variety
Chemical formula aluminium oxide with chromium, Al2O3::Cr
Identification
Color Red, may be brownish or purplish
Crystal habit Varies with locality. Terminated tabular hexagonal prisms.
Crystal system Trigonal
Cleavage No true cleavage
Fracture Uneven or conchoidal
Mohs Scale hardness 9.0
Luster Vitreous
Refractive index ~1.762-1.770
Pleochroism Orangey red, purplish red
Ultraviolet fluorescence red under longwave
Streak white
Specific gravity 4.0
Melting point 2050°C
Solubility none
Diaphaneity transparent

only moissanite and diamond are harder, with diamond having a Mohs hardness of 10.0 and moissonite falling somewhere in between corundum (ruby) and diamond in hardness.

All natural rubies have imperfections in them, including color impurities and inclusions of rutile needles known as "silk". Gemologists use these needle inclusions found in natural rubies to distinguish them from synthetics, simulants, or substitutes. Usually the rough stone is heated before cutting. Almost all rubies today are treated in some form, with heat treatment being the most common practice. However, rubies that are completely untreated but still of excellent quality command a large premium.

Some rubies show a 3-point or 6-point asterism or star. These rubies are cut into cabochons to display the effect properly. Asterisms are best visible with a single-light source, and move across the stone as the light moves or the stone is rotated. Such effects occur when light is reflected off the silk (the structurally oriented rutile needle. inclusions) in a certain way. This is one example where inclusions increase the value of a gemstone. Rubies can furthermore show color changes — though this occurs very rarely — and chatoyancy.

Emerald in Different Cultures, and Emerald Lore

Emerald is regarded as the traditional birthstone for May, as well as the traditional gemstone for the astrological signs of Taurus , Cancer and sometimes Gemini. One of the more quaint anecdotes on emeralds was by the 16th-century historian Brantome, who referred to the many impressive emeralds the Spanish under Cortez had brought back to Europe from Latin America. On one of Cortez's most famous emeralds he had the text engraved Inter Natos Mulierum non sur-rexit mayor (Among them borne of woman there hath not arisen a greater Man. XI, 11) which referred to John the Baptist. Brantome considered engraving such a beautiful and simple product of nature sacrilegious and considered this act the cause for Cortez's loss of an extremely precious pearl (to which he dedicated a work A beautiful and incomparable pearl) and even for the death of King Charles IX who died soon after.

High Priest Breastplate

In Exodus chapters 28 and 39, a number of precious stones are mentioned to be placed in the High Priest's Breastplate, representing the different tribes of Israel. This is generally considered to be (one of) the origin(s) of our present day tradition of birthstones.

According to Rebbenu Bachya, and the King James Version, the Hebrew word Nofech in Exodus 28:18 means Emerald, and was the stone on the Hoshen representing the tribe of Judah. However, the Septuagint translates the word as Anthrax, meaning coal, probably in reference to the colour of burning coal, and therefore many rabbinical sources, and most scholars, consider Nofech to mean a red garnet – traditionally called a carbuncle, which happens to be the Vulgate's translation of the word. There is a wide range of views among traditional sources about which tribe the stone refers to.

There are many complexities to identifying the Emerald as being the third stone or perhaps another stone on the breast plate. Multiple translations of the bible have created confusion about the nomenclature of the different stones. Another important fact is that in actuality there are two different breastplates made within a period of 800 years, and where it is assumed the first breastplate did not carry an emerald but a green felspar, and a real emerald in the second breastplate. Finally the twelfth stone in the Breastplate (which in the original text was actually listed as the 6th stone) has more generally been identified as beryl which was already included in the group of stones generally referred to as Smaragdus by Theophrastus in the Greek era.Further unreferenced claims regarding the possibility of what gemstone the Emerald could really have been include jasper, and even rubies.

In some cultures, the emerald is the traditional gift for the 55th wedding anniversary. It is also used as a 20th and 35th wedding anniversary stone.

Emerald Localities

Emeralds in antiquity were mined by the Egyptians and in Austria, as well as Swat in northern Pakistan.

A rare type of emerald known as a trapiche emerald is occasionally found in the mines of Colombia. A trapiche emerald exhibits a "star" pattern; it has raylike spokes of dark carbon impurities that give the emerald a six-pointed radial pattern. It is named for the trapiche, a grinding wheel used to process sugarcane in the region. Colombian emeralds are generally the most prized due to their transparency and fire. Some of the most rare emeralds come from three main emerald mining areas in Colombia: Muzo, Coscuez, and Chivor. Fine emeralds are also found in other countries, such as Zambia, Brazil, Zimbabwe, Madagascar, Pakistan, India, Afghanistan and Russia. In the US, emeralds can be found in Hiddenite, North Carolina. In 1998, emeralds were discovered in the Yukon Territory, Canada.

Synthetic emerald

Emerald is a rare and valuable gemstone and, as such, it has provided the incentive for developing synthetic emeralds. Both hydrothermal and flux-growth synthetics have been produced, and a method has been developed for producing an emerald overgrowth on colorless beryl. The first commercially successful emerald synthesis process was that of Carroll Chatham. Because Chatham's emeralds do not have any water and contain traces of vanadate, molybdenum and vanadium, a lithium vanadate flux process is probably involved. The other large producer of flux emeralds is Pierre Gilson Sr., which has been on the market since 1964. Gilson's emeralds are usually grown on natural colorless beryl seeds which become coated on both sides. Growth occurs at the rate of 1 mm per month, a typical seven-month growth run producing emerald crystals of 7 mm of thickness (Nassau, K. Gems Made By Man, 1980).

Hydrothermal synthetic emeralds have been attributed to IG Farben, Nacken, Tairus, and others, but the first satisfactory commercial product was that of Johann Lechleitner of Innsbruck, Austria, which appeared on the market in the 1960s. These stones were initially sold under the names "Emerita" and "Symeralds", and they were grown as a thin layer of emerald on top of natural colorless beryl stones. Although not much is known about the original process, it is assumed that Leichleitner emeralds were grown in acid conditions. Later, from 1965 to 1970, the Linde Division of Union Carbide produced completely synthetic emeralds by hydrothermal synthesis. According to their patents (US3,567,642 and US3,567,643), acidic conditions are essential to prevent the chromium (which is used as the colorant) from precipitating. Also, it is important that the silicon containing nutrient be kept away from the other ingredients in order to prevent nucleation and confine growth to the seed crystals. Growth occurs by a diffusion-reaction process, assisted by convection. Typical growth conditions include pressures of 700-1400 bars at temperatures of 500 to 600 °C with a temperature gradient of 10 to 25 °C. Growth rates as fast as 1/3 mm per day can be attained

Luminescence in ultraviolet light is considered a supplementary test when making a natural vs. synthetic determination, as many, but not all, natural emeralds are inert to ultraviolet light. Many synthetics are also UV inert.

Synthetic emeralds are often referred to as "created", as their chemical and gemological composition is the same as their natural counterparts. The U.S. Federal Trade Commission (FTC) has very strict regulations as to what can and what cannot be called "synthetic" stone. The FTC says: "§ 23.23(c) It is unfair or deceptive to use the word "laboratory-grown," "laboratory-created," "[manufacturer name]-created," or "synthetic" with the name of any natural stone to describe any industry product unless such industry product has essentially the same optical, physical, and chemical properties as the stone named."

Wispy veil-like inclusions are common in flux-grown synthetic emeralds.

Emerald Properties

Emerald

Emerald with host rock
General
Category Beryl variety
Chemical formula Beryllium aluminium silicate with chromium, Be3Al2(SiO3)6::Cr
Identification
Color Green
Crystal habit Hexagonal Crystals
Crystal system Hexagonal
Cleavage Poor Basal Cleavage (Seldom Visible)
Fracture Conchoidal
Mohs Scale hardness 7.5 - 8.0
Luster Vitreous
Refractive index 1.576 - 1.582
Pleochroism Distinct, Blue-Green/Yellow-Green
Streak White
Specific gravity 2.70 - 2.78

Emerald Properties

Emerald

Emerald with host rock
General
Category Beryl variety
Chemical formula Beryllium aluminium silicate with chromium, Be3Al2(SiO3)6::Cr
Identification
Color Green
Crystal habit Hexagonal Crystals
Crystal system Hexagonal
Cleavage Poor Basal Cleavage (Seldom Visible)
Fracture Conchoidal
Mohs Scale hardness 7.5 - 8.0
Luster Vitreous
Refractive index 1.576 - 1.582
Pleochroism Distinct, Blue-Green/Yellow-Green
Streak White
Specific gravity 2.70 - 2.78

Emerald

Emeralds are a variety of the mineral beryl (Be3Al2(SiO3)6,) colored green by trace amounts of chromium and sometimes vanadium. Beryl has a hardness of 7.5 - 8 on the 10 point Mohs scale of mineral hardness. Most emeralds are highly included, so their brittleness (resistance to breakage) is classified as generally poor. The word "emerald" comes from Latin smaragdus, via Greek smaragdos, its original source being a Semitic word izmargad or the Sanskrit word, marakata, meaning "emerald" or "green".


Properties determining value

"A Gem of the Finest Water."

Cut emeralds

Emerald, like all colored gemstones, is graded using four basic parameters, the four Cs of Connoisseurship; Color, Cut, Clarity and Crystal. The last C, crystal is simply used as a synonym that begins with C for transparency or what gemologists call diaphaneity. Prior to the 20th Century jewelers used the term water as in "a gem of the finest water" to express the combination of two qualities, color and crystal. Normally, in the grading of colored gemstones, color is by far the most important criterion. However, in the grading of emerald, crystal, is considered a close second. Both are necessary conditions. A fine emerald must possess not only a pure verdant green hue as described below, but also a high degree of transparency to be considered a top gem.

Color:

Scientifically speaking color is divided into three components; hue saturation and tone. Yellow and blue, the hues found adjacent to green on the spectral color wheel, are the normal secondary hues found in emerald. Emeralds occur in a range of hues from yellowish green to bluish green. The primary hue must, of course, be green. Only gems that are medium to dark in tone are considered emerald. Light toned gems are known by the species name, green beryl. In addition the hue must be bright (vivid). Gray is the normal saturation modifier or mask found in emerald. A grayish green hue is a dull green hue. In the trade, a fine emerald will have a vivid primary green hue only slightly modified by yellow and/or blue with no visible gray mask.

Clarity:

Emerald tends to have numerous inclusions and surface breaking fissures. Unlike diamond where the loupe standard, i.e. 10X magnification is used to grade clarity, emerald is graded by eye. Thus, if an emerald has no visible inclusions to the eye (assuming 20-20 vision) it is considered flawless. Stones that lack surface breaking fissures are extremely rare and therefore almost all emerald is treated, "oiled", to enhance its apparent clarity. Eye-clean stones of a vivid primary green hue (as described above) with no more than 15% of any secondary hue or combination (either blue or yellow) of a medium-dark tone command the highest prices.

Treatments:

Most emeralds are oiled as part of the post lapidary process, in order to improve their clarity. Cedar oil, having a similar refractive index, is often used in this generally accepted practice. Other liquids, including synthetic oils and polymers with refractive indexes close to that of emerald such as Opticon are also used. The U.S. Federal Trade Commission requires the disclosure of this treatment when a treated emerald is sold. The use of oil is traditional and largely accepted by the gem trade. Other treatments, for example the use of green-tinted oil, is not acceptable in the trade. The laboratory community has recently standardized the language for grading the clarity of emeralds. Gems are graded on a four step scale; none, minor, moderate and highly enhanced. Note that these categories reflect levels of enhancement not clarity. A gem graded none on the enhancement scale may still exhibit visible inclusions. Laboratories tend to apply these criteria differently. Some gem labs consider the mere presence of oil or polymers to constitute enhancement. Others may ignore traces of oil if the presence of the material does not materially improve the look of the gemstone.

Given that the vast majority of all emeralds are treated as described above, and the fact that two stones that appear to be similar in quality may actually be quite far apart in treatment level, a consumer considering a purchase of an expensive emerald is well advised to insist upon a treatment report from a reputable gemological laboratory. All other factors being equal, a high quality emerald with an enhancement level graded moderate should cost 40-50% less than an identical stone graded none.

Thursday, September 18, 2008

Diamond Cubic

The diamond cubic crystal structure is a repeating pattern that atoms may adopt as certain materials solidify. While the first known example was diamond, other elements in group IV also adopt this structure, including tin, the semiconductors silicon and germanium, and silicon/germanium alloys in any proportion.

Diamond cubic is in the Fd3m space group, which follows the face-centered cubic bravais lattice. The lattice describes the repeat pattern; for diamond cubic crystals this lattice is "decorated" with a motif of two tetrahedrally bonded atoms in each primitive cell, separated by 1/4 of the width of the unit cell in each dimension. Many compound semiconductors such as gallium arsenide, β-silicon carbide and indium antimonide adopt the analogous zinc blende structure, where each atom has nearest neighbors of an unlike element. Zinc blende's space group is F43m, but many of its structural properties are quite similar to the diamond structure.

The atomic packing factor of the diamond cubic structure is \frac{\sqrt{3} \pi}{16} with eight atoms per unit cell.

Mathematically, the points of the diamond cubic structure can be given coordinates as a subset of a three-dimensional integer lattice by using a cubical unit cell four units across.

Atomic placement in unit cell of side length a is given by the following placement vectors.

\mathbf{r}_0 = \vec{0}

\mathbf{r}_1 = (a/4)(\hat{x} + \hat{y} + \hat{z})

\mathbf{r}_2 = (a/4)(2\hat{x} + 2\hat{y})

\mathbf{r}_3 = (a/4)(3\hat{x} + 3\hat{y} + \hat{z})

\mathbf{r}_4 = (a/4)(2\hat{x} + 2\hat{z})

\mathbf{r}_5 = (a/4)(2\hat{y} + 2\hat{z})

\mathbf{r}_6 = (a/4)(3\hat{x} + \hat{y} + 3\hat{z})

\mathbf{r}_7 = (a/4)(\hat{x} + 3\hat{y} + 3\hat{z})


Manufacturing considerations

A diamond cubic crystal viewed from a <110> direction.

Since this class of material is important for electronics, it is important to know that they present open, hexagonal ion channels when ion implantation is carried out from any of the <110> directions (that is, 45 degrees from one of the cube edges). Their open structure also results in a volume reduction upon melting or amorphization, as is also seen in ice.

They display octahedral cleavage, which means that they have four planes—directions following the faces of the octahedron where there are fewer bonds and therefore points of structural weakness—along which single crystals can easily split, leaving smooth surfaces. Similarly, this lack of bonds can guide chemical etching of the right chemistry (i.e., potassium hydroxide solutions for Si) to produce pyramidal structures such as mesas, points, or etch pits, a useful technique for MEMS.

List of Famous Diamonds

A number of large or extraordinarily colored diamonds have gained fame, both as exquisite examples of the beautiful nature of diamonds, and because of the famous people who wore, bought, and sold them. A partial list of famous diamonds in history follows.

  • The Allnatt Diamond, a large antique cushion-shaped brilliant Fancy Vivid Yellow diamond
  • The Agra Diamond, antique cushion-shaped stellar brilliant, 28 carats
  • The Amsterdam Diamond, a 33.74 carat (6.748 g) black diamond which sold for $352,000 in 2001
  • The Archduke Joseph Diamond, antique cushion-shaped brilliant, 76 carats
  • The Ashberg Diamond
  • The Aurora Butterfly of Peace
  • The Aurora Pyramid of Hope
  • The Beau Sancy, a 34-carat diamond not to be confused with the Sancy.
  • The Blue Heart Diamond, 30.82-carat heart brilliant
  • The Briolette of India Diamond, 90 carats
  • The Centenary Diamond, the world's largest colorless (grade D), flawless diamond
  • The Chloe Diamond, the largest top-quality, brilliant-cut white diamond ever to appear at auction, bought for just under $16.2 million and named by Georges Marciano, founder of Guess Jeans.
  • The Cullinan Diamond, the largest rough gem-quality diamond ever found at 3106.75 carats (621.35 g). It was cut into 105 diamonds including the Cullinan I or the Great Star of Africa, 530.2 carats (106.04 g), and the Cullinan II or the Lesser Star of Africa, 317.4 carats (63.48 g), both of which are now part of the British Crown Jewels.
  • The Darya-ye Noor Diamond, the largest pink diamond in the world, about 186 carats (36.4 g), part of Iranian Crown Jewels. Its exact weight isn't known and 186 carats is an estimate.
  • The Deepdene, widely considered to be the largest artificially irradiated diamond in the world
  • The De Young Red Diamond, the third-largest known red diamond was bought in a flea market on a hatpin by Sidney deYoung a prominent Boston estate jewelry merchant. It was donated by him to the museum of natural history.
  • The Dresden Green Diamond, antique pear-shaped brilliant - its color is the result of natural irradiation
  • The Dresden White Diamond, 47-carat antique oval brilliant, colorless/near-colorless
  • The Dresden Yellow Diamond
  • The Dudley Diamond also known as the Star of South Africa. This must not be confused with the Star of Africa. The Star of South Africa was the initial name given to this diamond, when it was purchased as an 83.5-carat rough diamond. The diamond is a D-color, pear shaped, three-sided stellar brilliant cut stone, weighing 47.69 carats.
  • The Earth Star Diamond a 111.59-carat, pear-shaped diamond with a strong coffee-like brown color.
  • The Empress Eugenie Diamond, 52-carat antique pear-shaped brilliant with an odd, random facet pattern
  • The Excelsior Diamond, the largest known diamond in the world prior to the Cullinan
  • The Florentine Diamond, a lost diamond, light yellow with a weight of 137.27 carats (27.45 g).
  • The Golden Jubilee Diamond, the largest faceted diamond ever cut at 545.67 carats (109.13 g)
  • The Graff Blue Diamond
  • The Great Chrysanthemum Diamond
  • The Great Mogul Diamond
  • The Gruosi Diamond
  • The Heart of Eternity Diamond, perhaps the largest Fancy Vivid Blue
  • The Hope Diamond, Fancy Dark Grayish-Blue and supposedly cursed. Almost certainly cut from the French Blue Diamond
  • The Hortensia Diamond
  • The Idol's Eye
  • The Incomparable Diamond, a golden diamond of 407.48 carats (81.496 g) cut from an 890 carat (178 g) rough diamond of the same name - it appeared on eBay in 2002
  • The Jacob Diamond weighing 184.5 carats (36.90 g), also known as Imperial Diamond & Victoria Diamond.
  • The Jones Diamond
  • The Jubilee Diamond, originally known as the Reitz Diamond; perhaps the sixth-largest in the world.
  • The Kimberley Diamond
  • The Koh-i-Noor, a 105 carat (21.6 g) white of Indian origin, with a long and turbulent history and a good deal of legend surrounding it. After belonging to various Mughal and Persian rulers, it was surrendered by the Maharajah of Lahore to Queen Victoria during the British occupation of India, and is now part of the Crown of Queen Elizabeth the Queen Mother.
  • The Lesotho Promise, is the 15th-largest diamond, the tenth-largest white diamond, and the largest diamond to be found in 13 years
  • The Millennium Star, at 203 carats is the second-largest colorless (grade D), flawless diamond.
  • The Moon of Baroda
  • The Moussaieff Red Diamond, the largest known Fancy Vivid Red
  • The Mouna Diamond
  • The Nassak Diamond
  • The Nepal Diamond
  • The Nizam Diamond
  • The Nur-Ul-Ain Diamond
  • The Ocean Dream Diamond, the only known natural Fancy Deep Blue-Green
  • The Oppenheimer Diamond, one of the largest uncut diamonds in the world
  • The Orlov, an Indian rose cut rumored to have served as the eye of a Hindu statue
  • The Paragon Diamond
  • The Porter Rhodes Diamond, a colorless 53-carat Asscher cut stone
  • The Portuguese Diamond
  • The Premier Rose Diamond, 137.02-carat (27.4 g) stone cut from a 353.9-carat (70.8 g) rough gem of the same name
  • The Pumpkin Diamond, perhaps the largest Fancy Vivid Orange
  • Pure Perfection, 84 carats, pure white. The largest brilliant-cut diamond ever put on auction. Sold on Nov. 14, 2007, at Sotheby's in Geneva to Georges Marciano of the Guess clothing line for $16.2 million, the second-highest price ever paid for a diamond on auction. Took 2 years to cut.
  • The Red Cross Diamond
  • The Regent Diamond, formerly belonging to Louis XV, Louis XVI, and Napoleon Bonaparte, it now resides in the Louvre
  • The Sancy, a pale yellow diamond currently in the Louvre
  • The Shah Diamond, very old yellow diamond (found approximately in 1450 in India) currently housed in the Diamond Fund in Kremlin
  • The Spirit of de Grisogono Diamond, the world's largest cut black diamond
  • The Spoonmaker's Diamond, circa 86-carat (17 g) diamond housed in Topkapı Palace in Istanbul.
  • The Star of Arkansas
  • The Star of the East, a 95-carat (19 g) stone once owned by Mrs. Evalyn McLean of Washington DC, who also owned the Hope Diamond
  • The Great Star of Africa or Cullinan Diamond, the largest rough gemstone-quality diamond ever found at 3,106.75 carats.
  • The Star of the South
  • The Steinmetz Pink Diamond, the largest known Fancy Vivid Pink
  • The Taylor-Burton Diamond
  • The Tiffany Yellow Diamond
  • The Uncle Sam Diamond, the largest discovered in the US
  • The Vargas

List of Gems : Diamond - The Diamond Industry

The diamond industry can be broadly separated into two basically distinct categories: one dealing with gem-grade diamonds and another for industrial-grade diamonds. While a large trade in both types of diamonds exists, the two markets act in dramatically different ways.

Gem diamond industry

A large trade in gem-grade diamonds exists. Unlike precious metals such as gold or platinum, gem diamonds do not trade as a commodity: there is a substantial mark-up in the sale of diamonds, and there is not a very active market for resale of diamonds. One hallmark of the trade in gem-quality diamonds is its remarkable concentration: wholesale trade and diamond cutting is limited to a few locations. 92% of diamond pieces cut in 2003 were in Surat, Gujarat, India. Other important centers of diamond cutting and trading are Antwerp, where the International Gemological Institute is based, London, New York, Tel Aviv, Amsterdam. A single company—De Beers—controls a significant proportion of the trade in diamonds. They are based in Johannesburg, South Africa and London, England.

The production and distribution of diamonds is largely consolidated in the hands of a few key players, and concentrated in traditional diamond trading centers. The most important being Antwerp, where 80% of all rough diamonds, 50% of all cut diamonds and more than 50% of all rough, cut and industrial diamonds combined are handled.[citation needed] This makes Antwerp the de facto 'world diamond capital'. New York, however, along with the rest of the United States, is where almost 80% of the world's diamonds are sold, including auction sales. Also, the largest and most unusually shaped rough diamonds end up in New York. The De Beers company, as the world's largest diamond miner holds a clearly dominant position in the industry, and has done so since soon after its founding in 1888 by the British imperialist Cecil Rhodes. De Beers owns or controls a significant portion of the world's rough diamond production facilities (mines) and distribution channels for gem-quality diamonds. The company and its subsidiaries own mines that produce some 40 percent of annual world diamond production. At one time it was thought over 80 percent of the world's rough diamonds passed through the Diamond Trading Company (DTC, a subsidiary of De Beers) in London, but presently the figure is estimated at less than 50 percent.

The De Beers diamond advertising campaign is acknowledged as one of the most successful and innovative campaigns in history. N. W. Ayer & Son, the advertising firm retained by De Beers in the mid-20th century, succeeded in reviving the American diamond market and opened up new markets, even in countries where no diamond tradition had existed before. N.W. Ayer's multifaceted marketing campaign included product placement, advertising the diamond itself rather than the De Beers brand, and building associations with celebrities and royalty. This coordinated campaign has lasted decades and continues today; it is perhaps best captured by the slogan "a diamond is forever".

Further down the supply chain, members of The World Federation of Diamond Bourses (WFDB) act as a medium for wholesale diamond exchange, trading both polished and rough diamonds. The WFDB consists of independent diamond bourses in major cutting centres such as Tel Aviv, Antwerp, Johannesburg and other cities across the USA, Europe and Asia.

In 2000, the WFDB and The International Diamond Manufacturers Association established the World Diamond Council to prevent the trading of diamonds used to fund war and inhumane acts.

WFDB's additional activities also include sponsoring the World Diamond Congress every two years, as well as the establishment of the International Diamond Council (IDC) to oversee diamond grading.

Industrial diamond industry

The market for industrial-grade diamonds operates much differently from its gem-grade counterpart. Industrial diamonds are valued mostly for their hardness and heat conductivity, making many of the gemological characteristics of diamond, including clarity and color, mostly irrelevant. This helps explain why 80% of mined diamonds (equal to about 100 million carats or 20,000 kg annually), unsuitable for use as gemstones and known as bort, are destined for industrial use. In addition to mined diamonds, synthetic diamonds found industrial applications almost immediately after their invention in the 1950s; another 3 billion carats (600 metric tons) of synthetic diamond is produced annually for industrial use.

The dominant industrial use of diamond is in cutting, drilling, grinding, and polishing. Most uses of diamonds in these technologies do not require large diamonds; in fact, most diamonds that are gem-quality except for their small size, can find an industrial use. Diamonds are embedded in drill tips or saw blades, or ground into a powder for use in grinding and polishing applications. Specialized applications include use in laboratories as containment for high pressure experiments (see diamond anvil cell), high-performance bearings, and limited use in specialized windows.

With the continuing advances being made in the production of synthetic diamonds, future applications are beginning to become feasible. Garnering much excitement is the possible use of diamond as a semiconductor suitable to build microchips from, or the use of diamond as a heat sink in electronics.

Diamond supply chain

The diamond supply chain is controlled by a limited number of powerful businesses, and is also highly concentrated in a small number of locations around the world.

Mining, sources and production

Only a very small fraction of the diamond ore consists of actual diamonds. The ore is crushed, during which care has to be taken in order to prevent larger diamonds from being destroyed in this process and subsequently the particles are sorted by density. Today, diamonds are located in the diamond-rich density fraction with the help of X-ray fluorescence, after which the final sorting steps are done by hand. Before the use of X-rays became commonplace, the separation was done with grease belts; diamonds have a stronger tendency to stick to grease than the other minerals in the ore.

Historically diamonds were known to be found only in alluvial deposits in southern India.India led the world in diamond production from the time of their discovery in approximately the 9th century BCE to the mid-18th century AD, but the commercial potential of these sources had been exhausted by the late 18th century and at that time India was eclipsed by Brazil where the first non-Indian diamonds were found in 1725.

Diamond production of primary deposits (kimberlites and lamproites) only started in the 1870s after the discovery of the Diamond fields in South Africa. Production has increased over time and now an accumulated total of 4.5 billion carats have been mined since that date. Interestingly 20% of that amount has been mined in the last 5 years alone and during the last ten years 9 new mines have started production while 4 more are waiting to be opened soon. Most of these mines are located in Canada, Zimbabwe, Angola, and one in Russia.

In the US, diamonds have been found in Arkansas, Colorado, and Montana. In 2004, a startling discovery of a microscopic diamond in the US[29] led to the January 2008 bulk-sampling of kimberlite pipes in a remote part of Montana.

Today, most commercially viable diamond deposits are in Russia, Botswana, Australia and the Democratic Republic of Congo. In 2005, Russia produced almost one-fifth of the global diamond output, reports the British Geological Survey. Australia boasts the richest diamondiferous pipe with production reaching peak levels of 42 metric tons (41 LT/46 ST) per year in the 1990s.

There are also commercial deposits being actively mined in the Northwest Territories of Canada, Siberia (mostly in Yakutia territory, for example Mir pipe and Udachnaya pipe), Brazil, and in Northern and Western Australia. Diamond prospectors continue to search the globe for diamond-bearing kimberlite and lamproite pipes.



Diamond output in 2005

"Blood" diamonds

In some of the more politically unstable central African and west African countries, revolutionary groups have taken control of diamond mines, using proceeds from diamond sales to finance their operations. Diamonds sold through this process are known as conflict diamonds or blood diamonds. Major diamond trading corporations continue to fund and fuel these conflicts by doing business with armed groups. In response to public concerns that their diamond purchases were contributing to war and human rights abuses in central Africa and West Africa, the United Nations, the diamond industry and diamond-trading nations introduced the Kimberley Process in 2002, which is aimed at ensuring that conflict diamonds do not become intermixed with the diamonds not controlled by such rebel groups, by providing documentation and certification of diamond exports from producing countries to ensure that the proceeds of sale are not being used to fund criminal or revolutionary activities. Although the Kimberley Process has been moderately successful in limiting the number of conflict diamonds entering the market, conflict diamonds smuggled to market continue to persist to some degree (approx. 2–3% of diamonds traded today are possible conflict diamonds). According to the 2006 book The Heartless Stone, two major flaws still hinder the effectiveness of the Kimberley Process: the relative ease of smuggling diamonds across African borders and giving phony histories, and the violent nature of diamond mining in nations that are not in a technical state of war and whose diamonds are therefore considered "clean."

The Canadian Government has setup a body known as Canadian Diamond Code of Conductto help authenticate Canadian diamonds. This is a very stringent tracking system of diamonds and helps protect the 'conflict free' label of Canadian diamonds.

Currently, gem production totals nearly 30 million carats (6,000 kg) of cut and polished stones annually, and over 100 million carats (20,000 kg) of mined diamonds are sold for industrial use each year, as are about 100,000 kg of synthesized diamond.

List of Gems : Diamond - Surfacing & Gemological Characteristics

Surfacing

Diamond-bearing rock is brought close to the surface through deep-origin volcanic eruptions. The magma for such a volcano must originate at a depth where diamonds can be formed, 150 km (90 miles) deep or more (three times or more the depth of source magma for most volcanoes); this is a relatively rare occurrence. These typically small surface volcanic craters extend downward in formations known as volcanic pipes. The pipes contain material that was transported toward the surface by volcanic action, but was not ejected before the volcanic activity ceased. During eruption these pipes are open to the surface, resulting in open circulation; many xenoliths of surface rock and even wood and/or fossils are found in volcanic pipes. Diamond-bearing volcanic pipes are closely related to the oldest, coolest regions of continental crust (cratons). This is because cratons are very thick, and their lithospheric mantle extends to great enough depth that diamonds are stable. Not all pipes contain diamonds, and even fewer contain enough diamonds to make mining economically viable.

The magma in volcanic pipes is usually one of two characteristic types, which cool into igneous rock known as either kimberlite or lamproite. The magma itself does not contain diamond; instead, it acts as an elevator that carries deep-formed rocks (xenoliths), minerals (xenocrysts), and fluids upward. These rocks are characteristically rich in magnesium-bearing olivine, pyroxene, and amphibole minerals which are often altered to serpentine by heat and fluids during and after eruption. Certain indicator minerals typically occur within diamondiferous kimberlites and are used as mineralogic tracers by prospectors, who follow the indicator trail back to the volcanic pipe which may contain diamonds. These minerals are rich in chromium (Cr) or titanium (Ti), elements which impart bright colors to the minerals. The most common indicator minerals are chromian garnets (usually bright red Cr-pyrope, and occasionally green ugrandite-series garnets), eclogitic garnets, orange Ti-pyrope, red high-Cr spinels, dark chromite, bright green Cr-diopside, glassy green olivine, black picroilmenite, and magnetite. Kimberlite deposits are known as blue ground for the deeper serpentinized part of the deposits, or as yellow ground for the near surface smectite clay and carbonate weathered and oxidized portion.

Once diamonds have been transported to the surface by magma in a volcanic pipe, they may erode out and be distributed over a large area. A volcanic pipe containing diamonds is known as a primary source of diamonds. Secondary sources of diamonds include all areas where a significant number of diamonds, eroded out of their kimberlite or lamproite matrix, accumulate because of water or wind action. These include alluvial deposits and deposits along existing and ancient shorelines, where loose diamonds tend to accumulate because of their approximate size and density. Diamonds have also rarely been found in deposits left behind by glaciers (notably in Wisconsin and Indiana); however, in contrast to alluvial deposits, glacial deposits are not known to be of significant concentration and are therefore not viable commercial sources of diamond.


Gemological Characteristics

Diamonds are thought to have been first recognized and mined in India (Golconda being one of them), where significant alluvial deposits of the stone could then be found along the rivers Penner, Krishna and Godavari. Diamonds have been known in India for at least 3000 years but most likely 6000 years. In 1813, Humphry Davy used a lens to concentrate the rays of the sun on a diamond in an atmosphere of oxygen, and showed that the only product of the combustion was carbon dioxide, proving that diamond is composed of carbon. Later, he showed that in an atmosphere devoid of oxygen, diamond is converted to graphite. The most familiar usage of diamonds today is as gemstones used for adornment a usage which dates back into antiquity. The dispersion of white light into spectral colors, is the primary gemological characteristic of gem diamonds. In the twentieth century, experts in the field of gemology have developed methods of grading diamonds and other gemstones based on the characteristics most important to their value as a gem. Four characteristics, known informally as the four Cs, are now commonly used as the basic descriptors of diamonds: these are carat, cut, color, and clarity.

List of Gems : Diamond - Natural History

Formation

The formation of natural diamond requires very specific conditions. Diamond formation requires exposure of carbon-bearing materials to high pressure, ranging approximately between 45 and 60 kilobars, but at a comparatively low temperature range between approximately 1652–2372 °F (900–1300 °C). These conditions are known to be met in two places on Earth; in the lithospheric mantle below relatively stable continental plates, and at the site of a meteorite strike.

Diamonds formed in cratons

The conditions for diamond formation to happen in the lithospheric mantle occur at considerable depth corresponding to the aforementioned requirements of temperature and pressure. These depths are estimated to be in between 140–190 kilometers (90–120 miles) though occasionally diamonds have crystallized at depths of 300-400 km (180-250 miles) as well. The rate at which temperature changes with increasing depth into the Earth varies greatly in different parts of the Earth. In particular, under oceanic plates the temperature rises more quickly with depth, beyond the range required for diamond formation at the depth required. The correct combination of temperature and pressure is only found in the thick, ancient, and stable parts of continental plates where regions of lithosphere known as cratons exist. Long residence in the cratonic lithosphere allows diamond crystals to grow larger.



The slightly misshapen octahedral shape of this rough diamond crystal in matrix is typical of the mineral. Its lustrous faces also indicate that this crystal is from a primary deposit.

Through studies of carbon isotope ratios (similar to the methodology used in carbon dating, except with the stable isotopes C-12 and C-13), it has been shown that the carbon found in diamonds comes from both inorganic and organic sources. Some diamonds, known as harzburgitic, are formed from inorganic carbon originally found deep in the Earth's mantle. In contrast, eclogitic diamonds contain organic carbon from organic detritus that has been pushed down from the surface of the Earth's crust through subduction (see plate tectonics) before transforming into diamond. These two different source carbons have measurably different 13C:12C ratios. Diamonds that have come to the Earth's surface are generally very old, ranging from under 1 billion to 3.3 billion years old.

Diamonds occur most often as euhedral or rounded octahedra and twinned octahedra known as macles or maccles. As diamond's crystal structure has a cubic arrangement of the atoms, they have many facets that belong to a cube, octahedron, rhombicosidodecahedron, tetrakis hexahedron or disdyakis dodecahedron. The crystals can have rounded off and unexpressive edges and can be elongated. Sometimes they are found grown together or form double "twinned" crystals grown together at the surfaces of the octahedron. These different shapes and habits of the diamonds result from differing external circumstances. Diamonds (especially those with rounded crystal faces) are commonly found coated in nyf, an opaque gum-like skin.

Diamonds and meteorite impact craters

Diamonds can also form in other natural high-pressure events. Very small diamonds, known as microdiamonds or nanodiamonds, have been found in meteorite impact craters. Such impact events create shock zones of high pressure and temperature suitable for diamond formation. Impact-type microdiamonds can be used as one indicator of ancient impact craters.

List of Gems : Diamond - Material Properties

A diamond is a transparent crystal of tetrahedrally bonded carbon atoms and crystallizes into the face centered cubic diamond lattice structure. Diamonds have been adapted for many uses because of the material's exceptional physical characteristics. Most notable are its extreme hardness, its high dispersion index, and extremely high thermal conductivity (900 – 2320 W/m K). Above 1700 °C (1973 K / 3583 °F), diamond is converted to graphite. Naturally occurring diamonds have a density ranging from 3.15 to 3.53 g/cm³, with very pure diamond typically extremely close to 3.52 g/cm³.

Hardness

Diamond is the hardest natural material known; hardness is defined as resistance to scratching. Diamond has a hardness of 10 (hardest) on Mohs scale of mineral hardness. Diamond's hardness has been known since antiquity, and is the source of its name.

The hardest diamonds in the world are from the New England area in New South Wales, Australia. These diamonds are generally small, perfect to semiperfect octahedra, and are used to polish other diamonds. Their hardness is considered to be a product of the crystal growth form, which is single stage growth crystal. Most other diamonds show more evidence of multiple growth stages, which produce inclusions, flaws, and defect planes in the crystal lattice, all of which affect their hardness.

The hardness of diamonds contributes to its suitability as a gemstone. Because it can only be scratched by other diamonds, it maintains its polish extremely well. Unlike many other gems, it is well-suited to daily wear because of its resistance to scratching—perhaps contributing to its popularity as the preferred gem in an engagement or wedding rings, which are often worn every day.

Industrial use of diamonds has historically been associated with their hardness; this property makes diamond the ideal material for cutting and grinding tools. As the hardest known naturally-occurring material, diamond can be used to polish, cut, or wear away any material, including other diamonds. However, diamond is a poor choice for machining ferrous alloys at high speeds. At the high temperatures created by high speed machining, carbon is soluble in iron, leading to greatly increased wear on diamond tools as compared to other alternatives. Common industrial adaptations of this ability include diamond-tipped drill bits and saws, or use of diamond powder as an abrasive. Industrial-grade diamonds are generally considered unsuitable for use as gems.

Electrical conductivity

Other specialized applications also exist or are being developed, including use as semiconductors: some blue diamonds are natural semiconductors, in contrast to most other diamonds, which are excellent electrical insulators. However, substantial conductivity has been observed for undoped diamond when exposed to air.

Toughness

Toughness relates to a material's ability to resist breakage from forceful impact. The toughness of natural diamond has been measured as 3.4 MN m-3/2, which is good compared to other gemstones, but poor compared to most engineering materials. As with any material, the macroscopic geometry of a diamond contributes to its resistance to breakage. Diamond is therefore more fragile in some orientations than others.

Tuesday, September 16, 2008

List of Gems : Diamond

In mineralogy, diamond is the allotrope of carbon where the carbon atoms are arranged in an isometric-hexoctahedral crystal lattice. Its hardness and high dispersion of light make it useful for industrial applications and jewelry. It is the hardest known naturally-occurring mineral. It is possible to treat regular diamonds under a combination of high pressure and high temperature to produce diamonds (known as Type-II diamonds) that are harder than the diamonds used in hardness gauges. Presently, only aggregated diamond nanorods, a material created using ultrahard fullerite (C60) is confirmed to be harder, although other substances such as cubic boron nitride, rhenium diboride and ultrahard fullerite itself are comparable.

Diamonds are specifically renowned as a material with superlative physical qualities; they make excellent abrasives because they can be scratched only by other diamonds, borazon, ultrahard fullerite, rhenium diboride, or aggregated diamond nanorods, which also means they hold a polish extremely well and retain their lustre. Approximately 130 million carats (26,000 kg (57,000 lb)) are mined annually, with a total value of nearly USD $9 billion, and about 100,000 kg (220,000 lb) are synthesized annually.

The name diamond derives from the ancient Greek ἀδάμας (adamas) "invincible", "untamed", from ἀ- (a-), "un-" + δαμάω (damáō), "to overpower, to tame". They have been treasured as gemstones since their use as religious icons in ancient India and usage in engraving tools also dates to early human history. Popularity of diamonds has risen since the 19th century because of increased supply, improved cutting and polishing techniques, growth in the world economy, and innovative and successful advertising campaigns. They are commonly judged by the “four Cs”: carat, clarity, color, and cut.

Roughly 49% of diamonds originate from central and southern Africa, although significant sources of the mineral have been discovered in Canada, India, Russia, Brazil, and Australia. They are mined from kimberlite and lamproite volcanic pipes, which can bring diamond crystals, originating from deep within the Earth where high pressures and temperatures enable them to form, to the surface. The mining and distribution of natural diamonds are subjects of frequent controversy such as with concerns over the sale of conflict diamonds (aka blood diamonds) by African paramilitary groups.

Diamond

A scattering of round-brilliant cut diamonds shows off the many reflecting facets.
General
Category Native Minerals
Chemical formula C
Identification
Molecular Weight 12.01 u
Color Typically yellow, brown or gray to colorless. Less often in blue, green, black, translucent white, pink, violet, orange, purple and red.
Crystal habit Octahedral
Crystal system Isometric-Hexoctahedral (Cubic)
Cleavage 111 (perfect in four directions)
Fracture Conchoidal - step like
Mohs Scale hardness 10
Luster Adamantine
Polish luster Adamantine
Refractive index 2.4175–2.4178
Optical Properties Singly Refractive
Birefringence none
Dispersion .044
Pleochroism none
Ultraviolet fluorescence colorless to yellowish stones - inert to strong in long wave, and typically blue. Weaker in short wave.
Absorption spectra In pale yellow stones a 415.5 nm line is typical. Irradiated and annealed diamonds often show a line around 594 nm when cooled to low temperatures.
Streak White
Specific gravity 3.52 (+/- .01)
Density 3.5-3.53 g/cm³
Diaphaneity Transparent to subtransparent to translucent

List of Gems : Aquamarine

Aquamarine (Lat. aqua marinā, "water of the sea") is a gemstone-quality transparent variety of beryl, having a delicate blue or turquoise color, suggestive of the tint of seawater. It is closely related to the gem emerald. Colors vary and yellow beryl (heliodor), rose pink beryl (morganite), and white beryl (goshenite) are known.

Composition

Aquamarine is a beryl with a hexagonal crystal structure and a chemical formula of Be3Al2(SiO3)6, a beryllium aluminium silicate mineral. It has a specific gravity of 2.68 to 2.74 and a Mohs hardness of from 7.5 to 8. Aquamarine typically is on the low end of the specific gravity range, normally at less than 2.7. The pink variety exhibits a high specific gravity of around 2.8. Refractive indices range around 1.57 to 1.58.

Aquamarine

Aquamarine
General
Category beryl variety
Chemical formula Be3Al2Si6O18
Identification
Color transparent (or can be translucent if included), greenish blue to blue green, typically light in tone
Crystal system hexagonal
Cleavage very difficult in one direction, almost never seen
Fracture conchoidal
Mohs Scale hardness 7.5 - 8
Luster vitreous to resinous
Polish luster vitreous
Refractive index 1.577 - 1.583 (+/- .017)
Optical Properties Double refractive, uniaxial negative
Birefringence .005 - .009
Dispersion .014
Pleochroism weak to moderate, blue and greenish blue; or different tones of blue with lighter tones associated with the optic axis direction
Ultraviolet fluorescence inert
Absorption spectra indistinct lines at 537 and 456nm. Depending on the depth of color, there is a strong line at 427nm.
Specific gravity 2.72 (+.18, -.05)

Locations of deposits

It occurs at most localities which yield ordinary beryl, some of the finest coming from Russia. The gem-gravel placer deposits of Sri Lanka contain aquamarine. Clear yellow beryl, such as occurs in Brazil, is sometimes called aquamarine chrysolite. When corundum presents the bluish tint of typical aquamarine, it is often termed Oriental aquamarine.

In the United States, aquamarines can be found at the summit of Mt. Antero in the Sawatch Range in central Colorado. In Wyoming, aquamarine has been discovered in the Big Horn mountains, near Powder River Pass. In Brazil, there are mines in the states of Minas Gerais, Espírito Santo and Bahia. Colombia, Zambia, Madagascar, Malawi, Tanzania and Kenya also produce aquamarine.

The biggest aquamarine ever mined was found at the city of Marambaia, Minas Gerais, Brazil, in 1910. It weighed over 110 kg, and its dimensions were 48.5 cm long and 42 cm in diameter.

Aquamarine is the official state gem of Colorado and Missouri.

Culture and historical/mythical usage

  • Aquamarine (along with bloodstone) is the birthstone associated with March. It is also the gemstone for the 19th Anniversary.
  • People in the Middle Ages thought that aquamarine could magically overcome the effects of poison.
  • Ancient sailors traveled with aquamarine crystals, believing that it would ensure a safe voyage, and guarantee a safe return; they often slept with the stones under their pillow to ensure sound sleep. They believed the siren’s (mermaid) fish-like lower body was made of aquamarine.

Synthetic and artificial gemstones

Some gemstones are manufactured to imitate other gemstones. For example, cubic zirconia is a synthetic diamond simulant composed of zirconium oxide. The imitations copy the look and color of the real stone but possess neither their chemical nor physical characteristics.

However, lab created gemstones are not imitations. For example, diamonds, ruby, sapphires and emeralds have been manufactured in labs to possess identical chemical and physical characteristics to the naturally occurring variety. Synthetic (lab created) corundums, including ruby and sapphire, are very common and they cost only a fraction of the natural stones. Smaller synthetic diamonds have been manufactured in large quantities as industrial abrasives. Larger synthetic diamonds of gemstone quality, especially of the colored variety, are also manufactured.

Whether a gemstone is a natural stone or a lab-created (synthetic) stone, the characteristics of each are the same. Lab-created stones tend to have a more vivid color to them, as impurities are not present in a lab, so therefore do not affect the clarity or color of the stone. However, natural gemstones are still considered more valuable on average due to their relative scarcity.

The origin of the gemstone also does not affect its categorization as precious or semi-precious. Rubies, sapphires and emeralds are always precious stones, while other gems are considered semi-precious.

Treatments applied to gemstones

Gemstones are often treated to enhance the color or clarity of the stone. Depending on the type and extent of treatment, they can affect the value of the stone. Some treatments are used widely because the resulting gem is stable, while others are not accepted most commonly because the gem color is unstable and may revert to the original tone.

Heat

Heat can improve gemstone color or clarity. Most citrine is made by heating amethyst, and partial heating with a strong gradient results in ametrine - a stone partly amethyst and partly citrine. Much aquamarine is heat treated to remove yellow tones, change the green color into the more desirable blue or enhance its existing blue color to a purer blue.

Nearly all tanzanite is heated at low temperatures to remove brown undertones and give a more desirable blue/purple color. A considerable portion of all sapphire and ruby is treated with a variety of heat treatments to improve both color and clarity.

When jewelry containing diamonds is heated(for repairs) the diamond should be protected with boracic acid; otherwise it could be burned on the surface or even burned completely up. When jewelry containing sapphires or rubies is heated(for repairs) it should not be coated with boracic acid or any other substance, as this can etch the surface; it does not have to be "protected" like a diamond.

Radiation

Most blue topaz, both the lighter and the darker blue shades such as "London" blue, has been irradiated to change the color from white to blue. Some improperly handled gems which do not pass through normal legal channels may have a slight residual radiation, though strong requirements on imported stones are in place to ensure public safety. Most greened quartz (Oro Verde) is also irradiated to achieve the yellow-green color.

Waxing / Oiling

Emeralds containing natural fissures are sometimes filled with wax or oil to disguise them. This wax or oil is also colored to make the emerald appear of better color as well as clarity. Turquoise is also commonly treated in a similar manner.

Fracture filling

Fracture filling has been in use with different gemstones such as diamonds, emeralds and sapphires. More recently (in 2006) "Glass Filled Rubies" received a lot of publicity. Rubies over 10 carat (2 g), particularly sold in the Asian market with large fractures were filled with lead glass, thus dramatically improving the appearance (of larger rubies in particular). Such treatments are fairly easy to detect.

Gemstone color

Color is the most obvious and attractive feature of gemstones. The color of any material is due to the nature of light itself. Daylight, often called white light, is actually a mixture of different colors of light. When light passes through a material, some of the light may be absorbed, while the rest passes through. The part that is not absorbed reaches the eye as white light minus the absorbed colors. A ruby appears red because it absorbs all the other colors of white light - blue, yellow, green, etc. - except red.

The same material can exhibit different colors. For example ruby and sapphire have the same chemical composition (both are corundum) but exhibit different colors. Even the same gemstone can occur in many different colors: sapphires show different shades of blue and pink and "fancy sapphires" exhibit a whole range of other colors from yellow to orange-pink, the latter called "Padparadscha sapphire".

This difference in color is based on the atomic structure of the stone. Although the different stones formally have the same chemical composition, they are not exactly the same. Every now and then an atom is replaced by a completely different atom (and this could be as few as one in a million atoms). These so called impurities are sufficient to absorb certain colors and leave the other colors unaffected.

As an example: beryl, which is colorless in its pure mineral form, becomes emerald with chromium impurities. If you add manganese instead of chromium, beryl becomes pink morganite. With iron, it becomes aquamarine.

Some gemstone treatments make use of the fact that these impurities can be "manipulated", thus changing the color of the gem.

Cutting and polishing

A few gemstones are used as gems in the crystal or other form in which they are found. Most however, are cut and polished for usage as gemstones. The two main classifications are stones cut as smooth, dome shaped stones called cabochons, and stones which are cut with a faceting machine by polishing small flat windows called facets at regular intervals at exact angles.

Stones which are opaque such as opal, turquoise, variscite, etc. are commonly cut as cabochons. These gems are designed to show the stone's color or surface properties as in opal and star sapphires. Grinding wheels and polishing agents are used to grind, shape and polish the smooth dome shape of the stones.

Gems which are transparent are normally faceted, a method which shows the optical properties of the stone’s interior to its best advantage by maximizing reflected light which is perceived by the viewer as sparkle. There are many commonly used shapes for faceted stones. The facets must be cut at the proper angles, which varies depending on the optical properties of the gem. If the angles are too steep or too shallow, the light will pass through and not be reflected back toward the viewer. Special equipment, a faceting machine, is used to hold the stone onto a flat lap for cutting and polishing the flat facets. Rarely, some cutters use special curved laps to cut and polish curved facets.