Custom Search

Saturday, September 20, 2008

Ruby

A Ruby is a pink to blood-red gemstone, a variety of the mineral corundum (aluminium oxide). The common red color is caused mainly by the presence of the element chromium. Its name comes from ruber, Latin for red. Other varieties of gem-quality corundum are called sapphires. The ruby is considered one of the four precious stones, together with the sapphire, the emerald, and the diamond.

Prices of rubies are primarily determined by color. The brightest and best "red" called pigeon blood-red, commands a huge premium over other rubies of similar quality. After color follows clarity: similar to diamonds, a clear stone will command a premium, but a ruby without any needle-like rutile inclusions will indicate that the stone has been treated one way or another. Cut and carat (size) also determine the price.

Physical properties

Rubies have a hardness of 9.0 on the Mohs scale of mineral hardness. Among the natural gems

Ruby

Ruby crystal before faceting, length 0.8 inches (2 cm)
General
Category Mineral variety
Chemical formula aluminium oxide with chromium, Al2O3::Cr
Identification
Color Red, may be brownish or purplish
Crystal habit Varies with locality. Terminated tabular hexagonal prisms.
Crystal system Trigonal
Cleavage No true cleavage
Fracture Uneven or conchoidal
Mohs Scale hardness 9.0
Luster Vitreous
Refractive index ~1.762-1.770
Pleochroism Orangey red, purplish red
Ultraviolet fluorescence red under longwave
Streak white
Specific gravity 4.0
Melting point 2050°C
Solubility none
Diaphaneity transparent

only moissanite and diamond are harder, with diamond having a Mohs hardness of 10.0 and moissonite falling somewhere in between corundum (ruby) and diamond in hardness.

All natural rubies have imperfections in them, including color impurities and inclusions of rutile needles known as "silk". Gemologists use these needle inclusions found in natural rubies to distinguish them from synthetics, simulants, or substitutes. Usually the rough stone is heated before cutting. Almost all rubies today are treated in some form, with heat treatment being the most common practice. However, rubies that are completely untreated but still of excellent quality command a large premium.

Some rubies show a 3-point or 6-point asterism or star. These rubies are cut into cabochons to display the effect properly. Asterisms are best visible with a single-light source, and move across the stone as the light moves or the stone is rotated. Such effects occur when light is reflected off the silk (the structurally oriented rutile needle. inclusions) in a certain way. This is one example where inclusions increase the value of a gemstone. Rubies can furthermore show color changes — though this occurs very rarely — and chatoyancy.

Emerald in Different Cultures, and Emerald Lore

Emerald is regarded as the traditional birthstone for May, as well as the traditional gemstone for the astrological signs of Taurus , Cancer and sometimes Gemini. One of the more quaint anecdotes on emeralds was by the 16th-century historian Brantome, who referred to the many impressive emeralds the Spanish under Cortez had brought back to Europe from Latin America. On one of Cortez's most famous emeralds he had the text engraved Inter Natos Mulierum non sur-rexit mayor (Among them borne of woman there hath not arisen a greater Man. XI, 11) which referred to John the Baptist. Brantome considered engraving such a beautiful and simple product of nature sacrilegious and considered this act the cause for Cortez's loss of an extremely precious pearl (to which he dedicated a work A beautiful and incomparable pearl) and even for the death of King Charles IX who died soon after.

High Priest Breastplate

In Exodus chapters 28 and 39, a number of precious stones are mentioned to be placed in the High Priest's Breastplate, representing the different tribes of Israel. This is generally considered to be (one of) the origin(s) of our present day tradition of birthstones.

According to Rebbenu Bachya, and the King James Version, the Hebrew word Nofech in Exodus 28:18 means Emerald, and was the stone on the Hoshen representing the tribe of Judah. However, the Septuagint translates the word as Anthrax, meaning coal, probably in reference to the colour of burning coal, and therefore many rabbinical sources, and most scholars, consider Nofech to mean a red garnet – traditionally called a carbuncle, which happens to be the Vulgate's translation of the word. There is a wide range of views among traditional sources about which tribe the stone refers to.

There are many complexities to identifying the Emerald as being the third stone or perhaps another stone on the breast plate. Multiple translations of the bible have created confusion about the nomenclature of the different stones. Another important fact is that in actuality there are two different breastplates made within a period of 800 years, and where it is assumed the first breastplate did not carry an emerald but a green felspar, and a real emerald in the second breastplate. Finally the twelfth stone in the Breastplate (which in the original text was actually listed as the 6th stone) has more generally been identified as beryl which was already included in the group of stones generally referred to as Smaragdus by Theophrastus in the Greek era.Further unreferenced claims regarding the possibility of what gemstone the Emerald could really have been include jasper, and even rubies.

In some cultures, the emerald is the traditional gift for the 55th wedding anniversary. It is also used as a 20th and 35th wedding anniversary stone.

Emerald Localities

Emeralds in antiquity were mined by the Egyptians and in Austria, as well as Swat in northern Pakistan.

A rare type of emerald known as a trapiche emerald is occasionally found in the mines of Colombia. A trapiche emerald exhibits a "star" pattern; it has raylike spokes of dark carbon impurities that give the emerald a six-pointed radial pattern. It is named for the trapiche, a grinding wheel used to process sugarcane in the region. Colombian emeralds are generally the most prized due to their transparency and fire. Some of the most rare emeralds come from three main emerald mining areas in Colombia: Muzo, Coscuez, and Chivor. Fine emeralds are also found in other countries, such as Zambia, Brazil, Zimbabwe, Madagascar, Pakistan, India, Afghanistan and Russia. In the US, emeralds can be found in Hiddenite, North Carolina. In 1998, emeralds were discovered in the Yukon Territory, Canada.

Synthetic emerald

Emerald is a rare and valuable gemstone and, as such, it has provided the incentive for developing synthetic emeralds. Both hydrothermal and flux-growth synthetics have been produced, and a method has been developed for producing an emerald overgrowth on colorless beryl. The first commercially successful emerald synthesis process was that of Carroll Chatham. Because Chatham's emeralds do not have any water and contain traces of vanadate, molybdenum and vanadium, a lithium vanadate flux process is probably involved. The other large producer of flux emeralds is Pierre Gilson Sr., which has been on the market since 1964. Gilson's emeralds are usually grown on natural colorless beryl seeds which become coated on both sides. Growth occurs at the rate of 1 mm per month, a typical seven-month growth run producing emerald crystals of 7 mm of thickness (Nassau, K. Gems Made By Man, 1980).

Hydrothermal synthetic emeralds have been attributed to IG Farben, Nacken, Tairus, and others, but the first satisfactory commercial product was that of Johann Lechleitner of Innsbruck, Austria, which appeared on the market in the 1960s. These stones were initially sold under the names "Emerita" and "Symeralds", and they were grown as a thin layer of emerald on top of natural colorless beryl stones. Although not much is known about the original process, it is assumed that Leichleitner emeralds were grown in acid conditions. Later, from 1965 to 1970, the Linde Division of Union Carbide produced completely synthetic emeralds by hydrothermal synthesis. According to their patents (US3,567,642 and US3,567,643), acidic conditions are essential to prevent the chromium (which is used as the colorant) from precipitating. Also, it is important that the silicon containing nutrient be kept away from the other ingredients in order to prevent nucleation and confine growth to the seed crystals. Growth occurs by a diffusion-reaction process, assisted by convection. Typical growth conditions include pressures of 700-1400 bars at temperatures of 500 to 600 °C with a temperature gradient of 10 to 25 °C. Growth rates as fast as 1/3 mm per day can be attained

Luminescence in ultraviolet light is considered a supplementary test when making a natural vs. synthetic determination, as many, but not all, natural emeralds are inert to ultraviolet light. Many synthetics are also UV inert.

Synthetic emeralds are often referred to as "created", as their chemical and gemological composition is the same as their natural counterparts. The U.S. Federal Trade Commission (FTC) has very strict regulations as to what can and what cannot be called "synthetic" stone. The FTC says: "§ 23.23(c) It is unfair or deceptive to use the word "laboratory-grown," "laboratory-created," "[manufacturer name]-created," or "synthetic" with the name of any natural stone to describe any industry product unless such industry product has essentially the same optical, physical, and chemical properties as the stone named."

Wispy veil-like inclusions are common in flux-grown synthetic emeralds.

Emerald Properties

Emerald

Emerald with host rock
General
Category Beryl variety
Chemical formula Beryllium aluminium silicate with chromium, Be3Al2(SiO3)6::Cr
Identification
Color Green
Crystal habit Hexagonal Crystals
Crystal system Hexagonal
Cleavage Poor Basal Cleavage (Seldom Visible)
Fracture Conchoidal
Mohs Scale hardness 7.5 - 8.0
Luster Vitreous
Refractive index 1.576 - 1.582
Pleochroism Distinct, Blue-Green/Yellow-Green
Streak White
Specific gravity 2.70 - 2.78

Emerald Properties

Emerald

Emerald with host rock
General
Category Beryl variety
Chemical formula Beryllium aluminium silicate with chromium, Be3Al2(SiO3)6::Cr
Identification
Color Green
Crystal habit Hexagonal Crystals
Crystal system Hexagonal
Cleavage Poor Basal Cleavage (Seldom Visible)
Fracture Conchoidal
Mohs Scale hardness 7.5 - 8.0
Luster Vitreous
Refractive index 1.576 - 1.582
Pleochroism Distinct, Blue-Green/Yellow-Green
Streak White
Specific gravity 2.70 - 2.78